--- title: "Plot for distribution of common statistics and p-value" author: "Keon-Woong Moon" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{plot.htest} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE,comment = NA,fig.width=6,fig.height = 5, fig.align='center',out.width="90%") ``` To understand the concept of p value is very important. To teach the the distribution of common statistic( $\chi^2$ for chisq.test() , t for Student's t-test , F for F-test) and concept of the p-value, plot.htest() function can be used. ## Package Installation You can install this package form the github. Currently, package `webr` is under construction and consists of only one function - plot.htest(). ```{r,eval=FALSE} #install.packages("devtools") devtools::install_github("cardiomoon/webr") ``` ## Coverage of plot.htest() The plot.htest() function is a S3 method for class "htest". Currently, this function covers Welch Two Sample t-test, Pearson's Chi-squared test, Two Sample t-test, One Sample t-test, Paired t-test and F test to compare two variances. ## For Chi-squared Test You can show the distribution of chi-squre statistic and p-value. ```{r,message=FALSE} require(moonBook) require(webr) # chi-squared test x=chisq.test(table(acs$sex,acs$DM)) x plot(x) ``` ## For one sample t-test You can show the distribution of t-statistic and p-value in one sample t-test. ```{r} t.test(acs$age,mu=63) plot(t.test(acs$age,mu=63)) ``` ## Student t-test to compare means for two independent samples Before performing a t-test, you have to compare two variances. ### F test to compare two variances ```{r} x=var.test(age~DM,data=acs) x plot(x) ``` ### Use for Two Sample t-test for independence samples Based on the result of var.test(), you can perform t.test with default option(var.equal=FALSE). ```{r} x=t.test(age~DM,data=acs) x plot(x) ``` ## Student t-test using pooled variance To compare means of body-mass index between male and female patients, perform F test first. ```{r} var.test(BMI~sex,data=acs) plot(var.test(BMI~sex,data=acs)) ``` Based on the result of F test, you can perform t-test using pooled variance. ```{r} x=t.test(BMI~sex,data=acs,var.equal=TRUE) x plot(x) ``` ## Paired t-test You can show the distribution of t-statistic and p-value in paired t-test. ```{r} x=t.test(iris$Sepal.Width,iris$Petal.Width,paired=TRUE) plot(x) ``` ## Options for t-test You can change the options of t.test. ```{r} x=t.test(BMI~sex, data=acs,conf.level=0.99,alternative="greater",var.equal=TRUE) plot(x) ```